Agent-Based Modeling of Invasive Species

-A bottom-up approach

Weijie Cai, James Gentle George Mason University

Jeffrey Morisette
NASA

June 4, 2005

What is ABM?

Agent-Based Model (ABM) is a simulation tool which consists three essential components:

- ① Agents. Individual entities. Mobile (animals) or immobile (plants). Each agent has its own characters.
- ② Rules. How agents interact with each other and how they evolve according to current environment settings.
- 3 Environment. Explicit spatial and temporal structures for simulation.

Why ABM?

Popular in recent 20 years. Used in social science, biology, ecology, economics, etc.

- ① Modeling from bottom up based on individuals.
- 2 Data paucity.
- 3 Suitable for complex systems.

Annotated list of items http://www.red3d.com/cwr/ibm.html

Why here?

We want to reveal and understand the mitigation mechanism of invasive species, from a dynamic point of view.

- ① Regression does a good job to describe static scenarios, meanwhile we are also concerned about evolution of invasions.
- ② No enough field sample data to build/test spatio-temporal model

$$Y^{(t)} = f(X^{(t)}\beta) + \gamma g(Y_{\{N_{t,s}\}}^{(t)}) + \epsilon.$$

3 Test species control policies.

A simple review

ABM (IBM preferred by ecologists) has been used for *forest* plant species.

- ♦ Earliest model JABOWA in 1972.
- ♦ All later models are derived from this model.
- More and more complicated.
- ♦ No generic models.

Not much done in simulating invasions. A few papers use Cellular Automata (CA) model for simulation.

How here?

Still follow the approach of JABOWA system. Three components are

- ① Agents. Individual plants of tamarisk and cottonwood.
- ② Rules. Compete with neighbor plants (same or different species) by shading. Grow in lifecircle
 seed → seedling → sapling → mature plant
- 3 Environment. Soil salinity and moisture influence plant growth. Tamarisk will change soil salinity at its zone-of-influence.

Some details

- Use many classical mathematical functions, do they still
 make sense for invasive (or exotic) species?
- ♦ Model has not been calibrated.
- ♦ Do we lack more important factors?

Details on growth function

We assume

$$\Delta_D = \frac{G \cdot D \cdot (1 - \frac{D \cdot H}{D_{\text{max}} \cdot H_{\text{max}}})}{274 + 3b_2 D - 4b_3 D^2} \cdot f(\text{salinity}) \cdot f(\text{moisture}) \cdot f(\text{light}):$$

optimal growth function for two species

Details on salinity influence

We assume $f(U_p) = \frac{1}{1 + \exp(d(U_c - U_p))}$ (Chen and Twilley, 1998):

salinity influence on two species

Details on moisture influence

Could not find any reference on this functionality. We assume $f(M) = 1 - \frac{(M-0.6)^p}{0.6^p}$:

Details on calculating shading

We take ZOI (zone-of-influence) approach. Each plants weight distributes *uniformly* at its basal circle. And also in a plane surface at the top.

Some researchers find tree basal radii have strong linear relationship with their DBH's. So here $R_{\rm basal}=10*{\rm DBH}$. And $W\propto {\rm DBH}^2$, light = $\exp(-W/7)$.

Details on shading influence

We assume $f(light) = 1 - \exp(-4.64(light - 0.05))$ for shade-tolerant species,

 $f(\text{light}) = 2.24(1 - \exp(-1.136(\text{light} - 0.08)))$ for shade-intolerant species (Botkin et al, 1972).

Details on regeneration

It is very hard to simulate stages from seeds to established saplings. Most of researches only add established saplings randomly into simulation fields. In my study, I assume

$$N_{\text{vital}} = N_{\text{total}} \cdot \epsilon \cdot f(\text{salinity}) \cdot f(\text{moisture}) \cdot \frac{\log(\text{Age})}{\log(\text{Age}_{\text{max}})},$$

and distances from new seeds to their mother trees follow lognormal distribution (Greene et al 2004).

Model implementation

Object-Oriented Programming. Tried a very simple model in pure **R**. Slow though.

- ♦ Build a computation engine in C++. Compile to a shared library.
- ♦ In R, load the library, do statistical analysis and visualization.

Simulation results

Simulation results under three different initial settings.

- ♦ Simulation 1. 10 tamarisk and 10 cottonwood.
- ♦ Simulation 2. 5 tamarisk and 20 cottonwood.
- ♦ Simulation 3. 20 tamarisk and 50 cottonwood.

What's next

Before we use real data to evaluate this model, we have to consider more real factors

- ♦ Solicit your input and revise current model.
- Add more topography factors.
- ♦ Revise seed dispersal mechanisms along rivers and roads.

Problems

- Big problem: simple enough or complicated enough?
- Many parameters to be calibrated, which still requires practical data.
- ♦ Scale problem: redefine agents?
- Model validation. Three years' record may be not enough
 yet.

Reference

Botkin, D. B., Janak, J. F., and Wallis, J. R. (1972), Some ecological consequences of a computer model of forest growth, *Journal of Ecology* **60**, 849–872.

Chen, R., Twilley, R. R. (1998), A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. *Journal of Ecology* **86** 37-51.

Greene, D. F., Canham, C. D., Coates, K. D., and Lepage, P. T. (2004), An evaluation of alternative dispersal functions for trees. *Journal of Ecology* **92**,758-766.

Acknowledgment

We thank...

- ➤ Jeff, Asad, Neal...
- ➤ NASA invasive species project.
- ➤ All of you.